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Abstract

This paper introduces and analyzes certain classes of
mappings on R" which represent nonlinear generalizations
of the P- and S-matrices of Fiedler and Ptalk, and of several
closely related types of matrices. As in the case of the
corresponding matrices, these nonlinear P- and S-functions
arise frequently in applications.

Basic properties of the different functions and of
their inverses and subfunctions are established, and then
a number of theorems are proved about the interrelationships
between the various mappings. In particular, it is shown
that the well-known monotone mappings, as well as the M-
functions and certain of the strictly diagonally dominant
mappings recently analyzed by Rheinboldt and lMoré, respec-—
tively, are special cases of the P-functions. 1In turn,
these P-~functions and also the inverse isotone mappings are
subclasses of the S-~functions. In a final section, a series
of characterization theorems for the different functiocns are

presented in terms of conditions on their derivatives.
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1. Introduction

Consider the problem of solving an n-dimensional equation Fx = z,
where F:D ¢ R” » R" is a linear or nonlinear mapping of the type arising,
for instance, as a discrete analog of some elliptic boundary value problem
or as an equilibrium flow on a network. In the special case when the
underlying problem is linear, the resulting linear mapping usually has a
very special form, and--at least in the mentioned two problem areag--the
following classes of matrices appear to occur rather frequently:

(a) Positive definite and symmetric matrices; (b) strictly or irreducibly
diagonally dominant matrices; (c) M-, or Stieltjes-matrices; (d) P~ ox
S-matrices. For definitions see, e.g., Varga [1962] and Fiedler and
Prak {19627, [1966].

In the nonlinear case the mapping F often retains certain properties
of these matrices in some form, and this suggests the possibility of intro-
ducing specific classes of mappings on R™  which represent suitable
nonlinear generalizations of the cited types of matrices. A natural

nonlinear extension of positive-definiteness is evidently the concept of

1) This work was in part supported by the National
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a monotone mapping introduced--in a more general setting--by Kacurovskii
[19601, Minty [1962], and Browder [1963]. Symmetry carries over to the
assumption that F is a potential operator, which in turn leads to convex
gradient mappings as the nonlinear extension of symmetric, positive (semi)
definite matrices. Following an unpublished suggestion of Ortega, Phein-
boldt [1969] comnsidered a nonlinear generalization of M-matrices, the so-
called M-functions, while More [1970] recently defined and studied a class
of Q-diagonally dominant functions on R" which contains all matrices
under (b). At the same time llore and Rheinboldt were led to classes of
mappings F:D < R™ + ®" which represent nonlinear extensions of the matrices
in the last of the four categories and which were correspondingly named

P- and S-—functions. Some relevant results about these latter mappings have
already been reported in the cited dissertation of Moré, and a survey
~-without proofs--was also included in Rheinboldt [1970]. In this article
we present now a detailed account of these new classes of P- and S-functions,
their properties, and their relationships with the other types of nonlinear
mappings mentioned above.

Implicitly, P- and S—functions have already been used in various
applications. In particular, in connection with problems in mathematical
economics, Gale and Nikaido [1965] and Nikaido [1968] proved various
results about differentiable functions on R which in our setting turn
out to be results about P-~functions and their relation to IH-functions.

Similarly, Karamardian [1968] obtained a theorem sbout the solvability of




certain nonlinear inequalities which in our terminology shows that all
continuous P-functions are S-functions. In connection with nonlinear

electrical networks, Sandberg and Willson [1969] were led to special’

examples of P-functions, and there are probably other related results

of this type in the literature.

In Section 2 we introduce the nonlinear P~ and S-functions and recall
at the same time the definitions of the other cited mappings. Then in
Section 3 we establish a number of the basic properties of the P-functions
and use them to prove several related results. This is followed in
Section 4 by a discussion of the interrelationships between the various
mappings, and finally Section 5 presents a series of characterization

theorems in terms of differentiability conditions.

2. Background Material

In this section we collect the basic definitions of the P~ and S-
functions as well as of various other related classes of mappings on R,
Throughout the entire article x € y denotes the component-wise partial
ordering on the n-dimensional real linear space R" of column vectors,
and x < y 1s the associated strong relation X, < Vs i=1,...,n. The
corresponding notation is used on the space L(Rn) of real n X n matrices.
A rectangle Q in R” is the Cartesian product of n intervals on the
real line, each of which may be either open, closed, or semi-open; in
particular, any of these intervals may be unbounded, and thus a rectangle

may be all of R". The index set {1,...,n} will always be denoted by

J

N, and e ¢ RnB j € N, is the jth unit basis vector, while e ¢ R” is
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defined by e, = 1 for each i € N.
The following terminology appears to have become rather standard;
inverse isotonicity was introduced by Collatz [1952] under the name

"operator of monotone kind".

Definition 2.1. (a) A mapping F:D < R" + R” is isotone (or antitone) on

D if x £y, %,y € D, implies that Fx < Fy (or Fx > Fy), and strictly

isotone (or strictly antitone) if, in addition, it follows from x < vy,

x,y € D, that also Fx < Fy (or Fx > Fy).
(b) The function F:D ¢ R" - R" is inverse isotone on D if Fx < Fy,

x,y € D, implies that x < y.

Clearly then, an affine mapping Fx = Ax + b is isotone exactly if
A 2 0 and inverse isotone if and only if A is nonsingular and A_l > 0.
Most of the standard discretizations of Laplace’s equation give
rise to affine mappings Fx = Ax + b which are inverse isotone. In this
case, A often has non-positive off-diagonal elements as well, which
means that A 1is an M-matrix. For the generalization of the notion of
an M-matrix to nonlinear mappings, conditions about the dependence of the
component functions upon the individual variables are needed. Such condi-

tions are used in the definition of the following classes of mappings.

Definition 2.2. Consider a mapping F:D < R™ + R"™ with the components fig i ¢ N.

(a) ¥ is diagonal 4if for each i e I fi depends only on the ith variable

N e e o . .. ST . . s e
{(b) F is off-diagonally antitone if for any x € R and any 1 ¢ 3, 1,1 € H,
& J ¥ ¥ s 3

the functions
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(2.1) P, .:{t e R1 x + tej e D} - Rl Y, . (t) = £ (x+tej)
: ij‘ ’ ij i

are antitone.

(¢) F is diagonally (strictly) isotone if for any x € R" the functions

wll""’wnn defined by (2.1) are (strictly) isotone.

For an affine mapping Fx = Ax + b, off-diagonal antitoniéity is
equivalent with the condition aij €0, i# 3, i,j € N, while F is
diagonally (strictly) isotone if and only if a, s 20 (aii > 0) for each
i € N. The diagonal mappings evidently represent a nonlinear version of
the diagonal matrices.

In line with this, the nonlinear generalization of the M-matrices

can now be formulated as follows:

Definition 2.3. A mapping F:D < R" > R" is an M-function on D if it

is off-diagonally antitone and inverse isotone.

Clearly then, an affine mapping Fx = As + b is an M-function if and
only if A is an M-matrix. Several nonlinear examples of M-functions
are given by Rheinboldt [1969]; they related to discrete analogs of
boundary value problems of the type considered, for instance, by Bers
[1953], and to equilibrium flows on networks as studied by Birkhoff and
Kellogg [1966].

As mentioned in the introduction, a natural nonlinear generalization
of positive definiteness is the concept of a monotone mapping introduced

by Racurovskii [1960], Minty [1962], and Browder [1963]:




-6 -

Definition 2.4. A function F:D < R" > Rﬁ is monotone on D if

(2.2) (x-y)T(FX-Fy) >0, x,yeD,

strictly monotone if, in addition, the strict inequality holds in (2.2)

whenever x # y, and uniformly monotone if there is a ¢ > 0 such that

(x—y)T(FX~Fy) > CHX-YUZ, X,y € D.

In the affine case Fx = &x + b, (2.2) is equivalent with the condi-
tion XTAX 20, x ¢ Rn, for the quadratic form of A. This condition
evidently implies that for any x # O, and y = Ax, there is at least one

index k ¢ N such that X # 0 and x 2 0, or, in the case of strict

Kk
monotonicity, that XYy 2 0.

Fiedler and Ptak [1962], [1966] called a matrix A € L(Rn) a P0=
matrix or P-matrix if it satisfies the first or second of the latter two

properties, respectively. The following generalization of these concepts

to nonlinear mappings is then immediate:

Definition 2.5. A mapping F:D < R" > R" is a P-function (or Po—function)

if for any x,y €D, x # vy, there is an index k = k(x,y) € N such that

(x -y I &) -£, (] >0 (or (x -y ) [f, )-£, (y)] > 0 and x # Vi)

The class of P-matrices contains not only the positive-definite-, but
also the M-matrices; moreover, any strictly or irreducibly diagonally
dominant matrix with non-negative elements is likewise a P-matrix.
These facts are either explicitly or implicitly contained in the cited

. o G oy sl O ¢ « .
articles of Fiedler and Ptak. However, simple examples show that neither
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the P- nor the Po—matrices cover the matrices A € L(Rn) with nonnegative
inverses A_l 2 0, On the other hand, these matrices evidently satisfy

the condition
(2.3) Au > 0 for some u 2> 0, u # 0,

and Ky Fan [1958] proved that any A € L(Rn) with aij <0, 14# 3, i,j € N,
is an M-matrix if and only if (2.3) is satisfied, while Gale and Nikaido
[1965] showed that (2.3) also holds for every P-matrix. In line with this,
and following earlier work by Stiemke [1915], Fiedler and Ptak [1966]
called any A ¢ L(Rn) an S-matrix if it has the property (2.3) and an SO—

matrix if Au 2 O for some u > 0, u # 0. These concepts lend themselves

readily to the following nonlinear generalization:

Definition 2.6. A mapping F:D ¢ R™ > R" is an S—function (or So—function)

on D if for any x € D there is a y € D such that y > x, v # x, and

Fy > Fx (or Fy 2 Fx).

In the subsequent sections we shall investigate the relationship
between the variocus classes of functions introduced here, and we will also
show how most of the properties of the P~ and S-matrices generalize to
the corresponding nonlinear mappings. For details about these matrices
themselves see in all céses Fiedler and Ptak [1962], [1966].

We conclude this section with the nonlinear generalization of strictly
diagonally dominant matrices due to Moré [1970], and we refer to this

dissertation for the more general concept of ii-diagonal dominance.
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Definition 2.7. A mapping F:D C R" ~ " is strictly diagonally dominant

if for any x,y € D, x # y, it follows from fk(x) = fk(y) that

vy | < x=y e

Moré [1970] shows that--as in all previous cases—-this nonlinear
definition covers the corresponding linear concept; in other words, that
Fx = Ax + b is strictly diagonally dominant if and only if A is a strictly
diagonally dominant matrix. The mentioned class of (~diagonally dominant
functions includes in the linear case the irreducibly diagonal dominant
as well as a somewhat more general related family of matrices.

3. Basic Properties of P,.~ and P-functions and Related Results

0

In this section we establish a number of the basic properties of the

PO— and P-functions and use them to prove several related results. The
material included here already shows that, in some form, many of the
characteristics of P-matrices are indeed inherited by the P-functions.

We begin with two observations about inverse mappings which follow

almost directly from the definitions; the proofs are therefore omitted.

Theorem 3.1. (a) The mapping F:D < R” >~ R” is inverse isotone if and only
ce e o s . -1 s} oo, .
if it is injective and F ":FD¢ R - R is isotone.

(b} If F:D ¢ Rn -+ Rn is either strictly monotone or a P-function, then

1

e s s . = n . . .
it is injective and ¥ ":FD < R - RY is again strictly monotone or a P~

function, respectively.




Note that part (b) ensures every M-function to be injective. Observe
also that S=functions do not necessarily have this property. In fact, the

1

class of S—functions is rather large; for example, any f:(a,b) ¢ R™ » Rl

with £(x) < 1lim sup £(z) for all x € (a,b) is already an S-function oﬁ (a,b).
>R .

A simple ;ogification of Theorem 3.1(b) states that for any injective,
monotone mapping F:D R™ - R™ also F_l is a monotone function on FD.
The corresponding result for Po~functions is undecided. We conjecture that
for any continuous, injective Po—function F:Qc R" + R" on an open rectangle
Q also F—l is a Po—function on FQ. This result certainly holds for the
linear case and in Theorem 5.12 below we will prove that it is also correct

for F-differentiable Po—functions. The following two theorems are closely

related to this conjecture.

Theorem 3.2. The mapping F:D ¢ R+ " is injective and Ful:FD c R"+ R"

is a Po—function if and only if F + A is injective for any diagonal matrix

b = diag(d,,...,d ), d; > 0, i€ N,

Proof. Clearly, F is injective and le is a Pomfunction if and only if

for each x # v in D there is an index k € N such that fk(x) # fk(y) and

(Xk‘yk)[fk(x>—fk<Y)] > 0.

Suppose now that F_l is a Pomfunction but that Fx + Ax = Fy 4+ Ay

for some x # vy in D and some diagonal matrix A = diag(dl,keg,d Y,
di >0, i=1,...,n. Then fi(x)mfi(y) = di(yimxi) for each i ¢ N and

- 2 o - £ 4 ¢ ]
hence {xiwyi){fi(x)wfi(y)] = w&i{xiwyi} < 0 whenever L£{X> # fi(y}m This

contradicts the fact that F is a ?wauncti@na
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Conversely, if for some x # y in D we have (xi*yi){fi{x}=fi(y)} <0

whenever fi(x) # fi(y), i € N, then Fx + Ax = Fx + Ay for A = diag(dl,...,d )

n
with
NS
T TR oy if £.0x) # £,
1 i
d, = <
1
k 0 , otherwise.

This completes the proof.

Theorem 3.2 raises the question whether F itself is a Po—function
if F + A is injective for any diagonal matrix A with positive diagonal

elements. In the linear case this is correct, but for the nonlinear case

again only some partial answers are known. We return to this in Theorem 3.7.

Theorem 3.3. 1If F:D ¢ R® > R" is a P0~function (or P-function), then
F + ¢ is a P-function for any strictly isotone (or isotone), diagonal
mapping ®:D ¢ S Conversely, if for any € > 0, F + €I is a P-function,

where I € L(Rn) is the identity, then F is a Po—function.

Proof. The first part is a direct consequence of the definitions. For the
proof of the second part, suppose that F is not a Po—function. Then
there are x # y in D such that (x.-y,)[f.(x)-f.(y)] < 0 whenever x, # V.,

i 74771 i i i
i € N. Therefore,

€ = min {~ -

X, # Yo ie N} > 0,

X, =Y,
1 yl
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and (xi~yi)[fi(x)+€xi~fi(y)—€yi] €0 contradicts the fact that F + €1
is a P—function.

Recall again the conjecture stated before Theorem 3.2 If F:D C RY - jY
is an injective Po-function, then by Theorem 3.3, F + A is a P-function and
hence injective for any A = diag(dl,...,dn) € L(Rn) with a strictly positive
diagonal. This is not sufficient, however, to conclude from Theorem 3.2
that le is again a Po—function since that theorem requires F + A to be
injective for any A with a nonnegative diagonal. It appears that the
conjecture cannot-be settled in this way.

In Theorem 3.3 we considered additive tzansférmations of P-functiomns.
In continuation of this, the following result concerns:the composition of
these functions with diagonal mappings.  For simplicity we assume here
that the domains of definitions are all of Rn; it should be self-evident

how this generalizes to other domains.

Theorem 3.4. Let F:R® > R” be a P-function (ot P0~function) and
on n . ;
®:R" + R a diagonal mapping.
(a) If & is strictly isotome, then F¢® as well as ®°F are again

P=functions (or P.—functions).

0
{b) I1f each component ¢i’ i €N, of ¢ ig either strictly isotone

or strictly antitone, then ®°F°? is again a P-function (or P.-function).

0

Proof. The proofs are essentially the same for all cases; we therefore

congsider here only (b) under the assumption that F is & P-~function. ~If

for some kg No o If @k is stricily dsotone avd, sav. . % v, o ilthen
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¢k(xk) > ¢k(yk) and hence fk(®x) > fk(®y), as well as ¢k(fk(®x)) > ¢k(fk(®y)).

Thus,

(e, =y, ) [0y (£, (@:)) 9, (£, (@y))] > O,

and the same result holds in the other cases.

For PO~ and P-matrices it follows immediately from the definitions that
also any principal submatrix belongs to the same class. For M-matrices the
same result appears to be due to Ky Fan [1958]. The following subfunction-

concept represents the nonlinear generalization of a submatrix.

Definition 3.5. Consider F:D < R® + R" and a non-empty set M = {il,...,im}c: N.

For fixed constants cj, j & M, define

m:E > RY, n(y) =

1o g
%
L
o]
L
+
L
P
=
o)
m
[

where o7 are again the basis vectors of R". Then the subfunction G of
F, corresponding to M and {Ci}’ is defined on D, = {y ¢ Y1 (y) ¢ D} by

G, < R' >R, g (y) =f, (), =1,....m
j i,

Although a subfunction depends on the index set M as well as on the
constants Cj’ we chose not to burden the notation with an indication of this
dependence. In all cases the set M and the Cj should be self-evident
from the context.

As in the linear case, the next result follows rather directly from the

definitions; no proof is therefore given.
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Theorem 3.6. For any Po— and P-function F:D C R" > R" also any subfunction

belongs to the same function class.

As an application, we prove the following partial answer to the question

raised after Theorem 3.2.

~

Theorem 3.7. Let F:DC R® > R" be such that for any A = diag(dl,.«.,dn)
€ L(Rn) with di > 0, i £ N, the mapping F + A and all its subfunctions are

injective, Then F 1is a P0~function.

Proof. 1If F is not a P0~function, there exist ¥ # v in D such that
g o - a \
(3.1) (xi yi)[fi(x) fi(y)] < ( whenever X, # v;s 1€ N.

Let M= {ieN X, # yi} and for ease of notation assume that M = {l,,..,m} o N,

Gonsider the subfunction G of F with the components
(3.2 gi(tl,...,tm) = fi(tl,...,tm,ym_}_l,a..syn>, L= Lyuueame

Then for A = diag(d dn) with

1,...,

gs (xyone X )=, (¥yseeesy)

o=y,
1 }1

we have
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We turn now to the question whether Theorem 3.6 is also valid for
M—functions. For continuous surjective M-functions F:RP *-Rp, this was
shown by Rheinboldt [1969]. 1In order to prove the same result for arbi-
trary M-functions, we need first a theorem about the relation between

M- and P-functions.

Theorem 3.8. Any off-diagonally antitone P-function F:Q C R® >R" on a

rectangle Q is an M-function.

Proof. Let Fx < Fy for some x,y € Q and assume that M = i eN X > yi}
is not empty. For ease of notation let M = {1,...,m} ¢ N, and consider
the subfunction G of F with the components (3.2). Since F 1is off~

diagonally antitone, we obtain by definition of M that
giCYl""’ym) = fi(Y) P fi(x> 2 gi<Xl,---,Xm), 1 = l,¢.¢,m,
and hence that
(Xi-yi)[gi(yl,---,ym)—gi(xl,.--,xm)l <0, i=1,...,m.
This contradicts the fact that, by Theorem 3.6, G is'a P-function.
Now we can extend Theorem 3.6 also to M-~functions.

i : in fal , ;
Theorem 3.9. Let F:Q € R+~ R be an M-function on the rectangle Q. Then

also any subfunction of  F . is again an M-fuoction.

Proof. o Suppose that there is a subfunction G:D ¢ R® 5 r% 6f T corresponding
! wr

to an index set M and the c¢onstants cjg j £ M, which is not an M-function.
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{1,...,m}. Since D

For ease of notation we assume once more that M G
is again a rectangle, Theorem 3.8 implies that G 1is not a P—-function,

and hence that, for some u # v, u,v € D, € R,

(Uj“Vj)(gj(u)"gj(V)) £.0, j= L,/ .o,m.

Since u # v, a possible interchange ensures that MO ={1en u, < Vi} is

not empty, and for notational simplicity let MO ={1,...,k}, 1 €&k < m.

Then, for i = 1,...,k,

= <
fi(vl,...,vm,cm+l,...,cn) gin) gi(u)

]

fi<ul”'"um’cm+l”"’cn)

4N

fi(ul""’uk’vk+l""’vm’cm+l’°'°’cn>

while, for i = ktl,...,n, by the off-diagonal antitonicity,

fi(vl""’Vm’cm+l"°"cn) < fi(ul""’uk’vk+l””'"Vm’cm+l"°”cn)°

But now it follows from' the inverse isotonicity of ¥ that Vj <ouLy JoE Ll v 0k

incontradiction to the construction of MO'

These theorems on subfunctions are especially helpful inproofs about

Peior Mefunctions which use induction with oo the dimension of the

gpace, For example, Theorem 3.9 provides a tool for the characterizaricn

of surjectivity for continuous M-functions (see Rheinboldt [19691). As a

Jie

rent illustration, we give here a simple proof of the Findte~dimensgionsal

versionm of a well-~known vesult of
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uniformly monotone function on a Hilbert space is a homeomorphism. In

fact, we will prove the following stronger result for the n~dimensional

Theorem 3.10 (Moré [1970]). Let F:R® » R" be a continuous and uniform

P~function on Rp in the sense that there exists a ¢ > 0 such that for

any x # vy in R"  there is an index k = k(x,y) € N with
(3.3) e, ~y ) [£, G)-E, (DT 3 oz ]’

t k "k Tk k
Then F is a homeomorphism of R™ onto itself.

Proof. Since all norms on R®  are equivalent, we may assume that (3.3)
holds for the infinity norm. Then (3.3) implies that NFx-—.FyuQo 2 c“x—yl!oo

lex~leynm £ c“lux-~y|loo for all

and hence that F is injective and

®,y o dn FR". Thus only the surjectivity of ¥ mneeds to be proved.

Tor nn = 1, surjectivity is a direct consequence of (3.3); assume,

1 1

therefore, that the result is valid for some n > 1 and let F:Rn+ - Rp+
satisfy the conditions of the thecrem. Then for any given t € Rl the

napping
. n n .
G(e,t):R + R gi<X1§'“°>xn’t> = fiaxl"”'sxn’t>* ie N,

ig a uniform P~function on R" and hence surijective by induction hypo~-
e T ; ] L ; 1 o
+rhesis., This implies that for any fixed z € R a mapping H:R .~ R

ig well-defined by the relations
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(3.4 fi(hl(t),...,hn(t),t) =z, = gi(hl(t),...,hn(t),t), i€ N;

moreover, H 1is continuous. In fact, for s # t it follows from (3.3)

that
[hy (s)-hy () 1[5, (H(s),t) g, (B(£), )] > cfH(s)-H(t) I
and hence, together with (3.4), that
l6(a(s) ,£)-C(H(s) ,8) | = [|6(a(s), t)-CH (), D],
> cfH(s)-H(B)]

therefore, the continuity of H 1is a consequence of that of F. Then

alzo the function

1 1 _
1P~R - R 3 EU('C) - fn+l(h’(t)"“’hn(t)’t>

is continuous, and for s # t we obtain from (3.3) and (3.4) that
2
(s=t) [Y(s)=p(£)] » c|s-t|".

This shows that lim y(t) = +w, and lim Y(t) = -, and, thus, that
oo trc0 1
| is surjective. Now, there exists a % ¢ R with Y(t*) = Z 117 and
this together with (3.4) shows that Fx* = z for x% = {hg(t*),oc.,hn(t*)gt*)T.

Since =z was arbitrary, this completes the proof.

Clearly, this result contains as a direct corollary the cited theorem

of Minty [1962].
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Corollary 3.11. A continuous, uniformly monotone mapping F:R" ~ R" is

; n .
a homeomorphism from R~ onto itself.

The following lemma shows that all linear P-functions satisfy the

uniformity conditon (3.3).

Lemma 3.12. Let A e L(Rn) be a P-matrix. Then there exists a ¢ = 0 such

that for any x # 0O there is an index k = k(x) € N with

x,7, % clx 12,

where vy = AX.
The proof follows directly from the fact that the functional
g:Rn > Ri, g(x) = max (x.,y,) is continuous and positive on the unit
jeN ‘
sphere.

This leads directly to the following result of Sandberg and Willson

[1969].

Corvllary 3.14., Let A € L(Rp) be a P-matrix, and ©:R" > R" a continuous,

diagonal, and isotone function on R®. Then F = A + ® is a homeomorphism

T .
from R onto itself.

In fact, by Theorem 3.3, F is a P-function and from Lemma 3.12
it follows readily that F is also uniform. Thus Theorem 3.10 applies,

For a nonlinear generalization of this result, see Rheinboldt [19707.
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4. Relationships between the Function Classes

Tn this section we will prove a number of results about the rela-
tionships between the various function classes introduced in Section72.
For clarity we have indicated the general structure of these relations
in the form of a diagram (Figure 1). This diagram is meant to te ohly
illustrative, and the number at each implication arrow gives4the corre-
sponding theorem that specifies the precise conditions under which the
implication holds. Several relations were not included in order not to
burden the figure. For example, by definition any isotomne or strictly
isotone function is diagonally isotone, or strictly diagonally isotone,
respectively, and Theorem 4.9 below shows that certain Powfunctions are
M-functions. Note also that the diagram contains several derived
implications, such as, for examplé, that M-functions are strictly

diagonally isotone.

Diagonally

Strictly s Def. Strictly

diagonally
isotone

monotone isotone

Diagonally
isotone,
strictly diag./ 3' ; P-function

dominant

Po—function

Off~diag.
antirone Tnverse
P~function . Isotone

4.4 o

Strictly

Isotone
isotone

M-function

Flgure 1
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The following three results represent relatively straightforward
conclusions from the definitioms; their proofs were therefore again

omitted.

Theorem 4.1. An isotone (or strictly isotone) mapping F:D < R"~ R"

on the open set D 1is an SO— (or: S-) function.

Theorem 4.2. Any P0~ (or P-) function F:D C R" > ’" is diagonally

isotone (or strictly diagonally isotone).

Theorem 4.3. Any monotone (or strictly monotone) function F:D C R" -+ R

is 4 PO“ {or P-) function.

Tn Theorem 3.8 we obtained already a relation between P- and
M-functions. The following theorem extends this to the equivalence

statement shown in Figure 1.

Theorem 4.4.  The mapping F:0 < R® - R™ on the rectangle Q is an

M-function if and only if F 1is an off-diagonally antitone P-function.

Proof. Theorem 3.8 gives us the sufficiency of the condition; thus we
only need to prove the necessity. Suppose that F 1s an M-function, but

not a P-function. Then there exist x,y € D, x # y, such that

Since vy # x, we may assume that M ={iegN v 5 xi} is not empty, and

~—for ease of notation--that M = {1,2,...,m}, m g N. Let G:DG C.Rm‘+ R

be the subfunction of F  with the components
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gi(tl,oon,tm) = fi(tl"“’tm’xm—{-l"'.’xn)’ i = l,-co’mn
By the off-diagonal antitonicity, (4.1) implies that, for i = 1,...,m,

gi(xl, B ,xm) = fiCX)
(4.2)

< fi(y) < fi(yl”°°’ym’xm+l""’xn> = gi(xl,...,xm).

Now, by Theorem 3.7, G is an M-function and therefore inverse isotone.
But then (4.2) dimplies that X, g Yio i'=1,...,m, against construction

of M.

The next result establishes the connection between the inverse isotone

and the S-functions.

Theorem 4.5. If FiD C R" + R"™ is a continuous, inverse isotone mapping

on' the open set D, then F dis an S-function.

Proof. By Theorem 3.1(a), F is injective, and thus, by the Domain
Invariance Theorem, FD is an open set. Hence, given x € D there is:

a & > 0 such that Fx + Se € FD and consequently Fy = Fx + Ce for some

v £ D, Bince Fy > Fx, the inverse isotonicity implies that y > x, v # x,

as desired.

The relations in Figure 1 between PO—, and SO~, as well as P~ —and
S—-functions are essentially due to Karamardian [1968]. The following

lemma is implicitly contained in Karamardian's proof and forms its

central part.
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Lemma 4.6. -Let G:S C‘Rp + R™ be continuous on the (n~-1)-simplex
S = S[uel,...,uen] where o > 0.  Then there exists a vector w €5

such that

(4.3) wTGw = oamin g, (w).

jeN

Proof. The proof is based on the following generalization of the Brouwer
fixed point theorem by Kakutani [1941]: If ¢:¢ c R » K(C) maps a non-
empty convex, compact set C into the set K(C) of all non-empty closed
convex subsets of C, and if @ is upper-semicontinuous in the sense that

tmj (u,u) ¢ C x C is closed, then u € ¢u for some u € C.
uel

For the application define
‘ T . T
$:5 » K(S), du = {veS|v Gu = min z Gu}.
Z€S
Clearly, ®u is indeed non-empty, closed, and convex and hence a member of

K(S). ~To show that ¢ is upper—-semicontinuous, assume- that {uk} < S,

1im uk = U, vk € @uk, k=0,1,...5 and 1im Vk ="y, Then we have for all
Tero0 koo

kT, k T. k Lo
k>20and z £ S, (v) Gu € z Gu and hence, by the continuity of G

and the closedness of = §, VTGu € zTGu; that is, v € Qu.

Thus the Kakutani theorem applies, and there exists a w € S such that

T . . ® b
wGw = min zGw = O min { } Aigi(w) L A=1,),20,jeN}= o min g, (w)
zeS i=1 =1 * jeN 3

which completes the proof.
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It may be noted that analogously we can prove the corresponding result
with the minimum in (4.3) replaced by the maximum.
With this result we now obtain the desired relations between the'P-

and S~functions.

Theorem 4.7. A continuous PO- (or P~) function F:D C " -+ R” on the open

get’ D dis an S.— (or S~) function.

0

Proof. Given x & D, let ¢ > 0O be such that the n-simplex
S[x,x+uel,...,x+aen] is contained in D. Then Lemma 4.6 can be applied

F(x+z)-Fx, z € § = S[ael,...,uen]. Hence

It

to the mapping G:S —+ Rn, Gz

there exists . a v = x + w, w ¢ S, such that

4.4 (y-x) © (Fy-Fx)

i

o min [£.(y)-£.x)1,
FEN J

and clearly v 2 x, v # %x. Let £ (y) - £, (x) = min [£.(»)~f.&x)] = U.
k k jen d |
If F dis a PO~ (or P~) function and 1 2 0 (or u-> 0) there is nothing to

prove. Assume therefore that U < 0 (or p < 0) and set yj =

(yj~xj> <:‘:‘:j (y)-—fj (x)). Then

< v h .20 PR,
YJ whenever YJ and yJ xJ
(yj~xj)(fk(y>*fk(>{)) (or Yy 7 0)

£ Yj otherwise,

and din both cases there are indices for which the inequality sign applies.

Thus we obtain, by summation, Ol < (y—x)T(FymFx) which contradicts (4.4)

and hence completes the proof.
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The last as yet unproved implication in Figure 1 concerns the
relation between P-functions and the strictly diagonally dominant

mappings introduced in Definitiom 2.7.

Theorem 4.8 (Moré [1970]). A continuous, diagonally isotone and strictly

diagonally dominant mapping F:Q C R >R on a rectangle Q 1is a P-function.

Proof. Consider any x,y € Q, x # v, and let k € N be such that

}kayk! = ”x-y"w. Then fk(x) + fk(y) and Xy # Vit Suppose now that
(kayk){fk(x)nfk(y)] < @ and, for the sake of definiteness, let X > Y3
that is, fk(x) < fk(y). Define ¥:[0,1] » Q by wk(t) = % and

wi(t) = ty; + (I-t)x, for i # k, 1 ¢ N. Then !wk(t)-ykl = “\P(t)-yuoo
for t ¢ [0,1] and, by the strict diagonal dominance, we have

fk(Y(t)) # fk(y) for t € [0,1]. Since fk(?(O)) < fk(y), it follows

by continuity that fk(W(t)) < fk(y) for t € [0,1], and that, in particular,
£ V(1)) = £, (y+(x -y )eD) < £ (3)
k kTR kY

contradicting the diagonal isotonicity of F.

A'similar result holds for the mentioned (Q-diagonally dominant functions;
we refer to Moré [1970] for the proof.

We conclude this section with a variation of the sufficiency part of

Theorem 4.4,

Theorem 4.9, Let F:Q' ¢ R™ » R” be a continuous, off-diagonally antitone,

injective P0~function on' the open rectangle ~ Q. Then F is an M-function,
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Proof. We first show that Fy > Fx for x,y € Q implies that y > x. For
this observe that for sufficiently small € > 0, Fy + €y > Fx + ex. By
Theorem 3.4, F + €I is a P-function and hence by Theorem 4.4 an M-function.
The inverse isotonicity then implies that indeed y 2 x.

In order to prove the inverse isotonicity of F, assume now that
Fy 2 Fx, %,y € Q. Bykthe Domain Invariance Theorem, F is a homeomorphism
of Q onto FQ and consequently ult) = F—l(Fy+te) is a well-defined
continuous function for t e [0,e) and some ¢ > 0. Then Fu(t) > Fy for
0 <t < g and, by the first part of the proof, u(t) » x for t ¢ (0,e).
Since -u - is continuous; therefore also x < u(0) = y, and F 1is inverse

isotone.

5, ' Differentiable P-~ and S—functions

In this section we present a number of characterization theorems for
differentiable P- and S—functions in terms of properties of their deriva-
+ives. The first theorem is rather typical for many of the results which

follow.

Theorem 5.1.  Let F:DC R* > R™ be G-differentiable on the open set D.

Tf F'(x) is an S-matrix for each x in D, then F is an S-function.

Proof. Given any x € D, there exists a vector R2o

g

~# .0'such that

% + ge > 0 as well

]

F‘(x)ﬁ > 0. Clearly, for small & > 0 we then have h

as E'(x)h > 0. Now
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i

. [F(x+th)-Fx] = F'(x)h > 0

lim
>0+

shows that x + th e D, x + th > x, and F(x+th) > Fx for sufficiently small

t >0, Thus  F . is an S-function.

Corresponding results for P- and M-functions are harder to prove.
The following thecrem is essentially due to Gale and Nikaido [1965] and

Nikaido [1968], but our proef appears to be more direct.

Theorem 5.2, Let F:Q C R" + R™ be F-differentiable on the rectangle Q.
If F'(x) is a P-matrix (or M-matrix) for each x in Q, then F is a

P—function  (or M-function) on Q.

Proof. Evidently the result for M-functions follows directly from that for
P-functions as a consequence of Theorem 4.4. Moreover, the P-function case
will have been proved once we have shown that F  is a P-function on any
closed rectangle a C Q. - For that proof we proceed by induction on n., For
n =1 the result is trivial; hence assume that it holds for some n - 1 > 1
and let F:Q C R" » R" satisfy the condition of the theorem and consider

any closed rectangle a < Q.

il

Let x # v, X,V € 6, be given and suppose that X, TV, for some i € N.

-1 , .n-1

For simplicity let i = n and consider the subfunction G:QG < R R

of F " with the components

gi(tl""’tn~l) = fi(tl,...,tn_l,yn), i=1,...,n-1.

Since G'(tl,...,tn_l) is again a P-matrix for each (t1’°"’tn«l) in the

1

closed rectangle QG c QG ¢ R s the induction hypothesis implies that G
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is a P-function and therefore that, for some j ¢ N, j # n,
571 o~y ) LEL ()£, > 0.
(5.1) (xJ yJ)[JC) J(y)]

Fx < Fy, x > v}

For any fixed y ¢ Q we now show that the set Qy ={x e
is empty. Suppose that this were not so, and let {xk} C ay be any conver-
gent sequence. Then clearly lim xk = x % v, and by the closédness of a,

>0

% £ a and Fx < Fy. We now hase three cases; namely, (a) x >y, (b) x =y,
and (c) x # y, but L for some i & N. By the first part of the proof,
(c) implies that (5.1) holds for some j € N, j # i, which contradicts the
construction of x and y. If (b) holds, then

1in —2—  [FEyF () )] = 0,

ke [|x"-y |
and, since F'(y) is a P-matrix, there exists by Lemma 3.12 a constant ¢ > 0
such that some component of F'(y)(xk*y) exceeds c“kayﬂ > 0.  Hence also some
component of ka - Fy is positive for large k, which contradicts xk € ay'
Thus only case (a) remains and we have x € Qy’ that is Qy is closed.  In
particular, therefore any linearly-ordered subset of Qy has a lower bound
in 6y and by Zorn's Lemma there is a minimal element u € ay’ that is

X £ ﬁy, x € u. Since F'(u) is by Theorem 5.1 an S-matrix, there is a vector

h < 0 such that F'(u)h < 0.  Now

lim% [F(utth)-Fu] = F'(u)h < O
0+

implies that F(utth) < Fu £ Fy and vy <u + th <u for sufficiently small

t > 0 which contradicts the minimality of u, "Hence, also (2) does not
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apply and ay is empty.
A
Suppose now that x # y in Q are such that Cxiwyi)[fi(x)—fi(y)] <0
for i € N. Then X, # Vi for 1 € N; otherwise the first part of the proof

would imply that (5.1) holds for some j € N. Define A = diag(dl,...,dn) by
i >
+1,  if X 7Y,

-1 if x. <y,
5 i Yl’

i

and H:A"lﬁ crR® > g™ by Hx = A(F(4x)). Then, for any x € Aﬁla, H' (x) =
AF'(Ax)A is by Theorem 3.4(b) again a P-matrix. Moreover, by construction
of - H, we have Awlx > A_ly as well ‘as H(A_lx) < H(Aaly), which 'is a con~

tradiction to the result of the second part of the proof applied to . H.

Corollary 5.3. Let F:Q ¢ R" + R" be F-differentiable on the rectangle Q.

If F'(x) is a Po—matrix for-each: x in Q, then F is a Po—function on Q.

Proof. For any € > 0 consider the mapping FE:Q c RY - Rn, ng = Fx + ex.
By the first part of Theorem 3.4, Fé(x) = F'(x) + €I is a P-matrix for each
x € Q, and hence, by Theorem 5.2, Fe is a P-function for any € > 0. Now

the second part of Theorm 3.3 implies that F itself is a P0~function.

We note here that it is not known whether the last two results also
hold for more general domains than rectangles.

The next theorem is included only for the sake of completeness. The
proof for the monotone case is weli—known while that for strictly diagonally

dominant functions is contained in Moré [19707.
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Theorem 5.4, Let F:DC R® + R" be G-differentiable on the convex set D.
If F'(x) is a positive definite (or a strictly diagonally dominant) matrix
for each x in D, then F 1is a strictly monotone (or a strictly diagon-

ally dominant) function on D.

Theorems 5.1 through 5.4 raise the natural question whether F is
1

inverse isotone if F'(x) — > 0 for each =x in a suitable domain. The
answer to this is not known in general, but the next theorem provides a

partial answer. For another partial result, see Rheinboldt [1970].

Theorem 5.5.  Let F:D.C R® -+ R” be convex and G-differentiable on the open,
convex set D. Then F is inverse isotone if and only if F'(x) is non-

1

singular and F'(x) = > 0 for each x € D.

Proof. Assume that F is inverse isotone and that F'(x)h > 0 for some

x D and h € R, Then, by the convexity of F,
F(x+h) - Fx 2 F'(x)h 20

(see, for example, Ortega and Rheinboldt [1970], p. 448), which by the
inverse isotonicity iﬁplies that h > 0. Since h. € R was arbitrary, it
follows that F'(x) is nonsingular: and that F'(x)~1 > 0. Conversely, let
F'(x)“l %> 0 for each x € D. Then, if Fx > Fy for some y,x € D, we obtain
analogously from F'(y)(y-x) > Fy - Fx > 0 that y - x > 0 and hence that F

is dinverse isotone.
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The converses of Theorems 5.3 and 5.2 are certainly false as the simple
one-dimensional example f(x) = x3 shows. In fact, in both cases, even the
non-singularity of the derivative does not guarantee that F'(x) is an

S-matrix or P-matrix, respectively. For example,

Xi T %
F‘RZ Y F(x,,%,) =
. -2 l! 2 3
Xl + X2

is an F-differentiable P-function on R2, and hence, by Theorem 4.7, also
an S-function; but F'(0) is neither a P- nor an S-matrix.
Tn contrast to this example the following result holds in the inverse

isotone case.

Theorem 5.6. Let F:D C RY > R® be inverse isotone and G-differentiable on
the open set D. Then F'(x)-l > 0 for any point x in D at which F'(x)

is nonsingular.

Proof. Suppose that F'(x) is nonsingular at the point x € D. If F'(x)h >0

for scme h € Rn, then

lim ‘lE [F(x+th)-Fx] = F'(x)h > 0
t>0+

shows that F(x+th) > Fx for sufficiently small t > 0, and hence, by the

inverse isotonicity, that h > 0. Now let F'(x)h > O for some h € R and
set hk = h +'% F'(x)—le, k=0,1y,.. « Then F'(x)hk > 0, and it follows
from the first part that hk >0, k=0,1,... . Therefore we find that also
h = lim hk 2 0 and hence that F'(x)"l > 0.

Treo
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Corollary 5.7. Let F:D < R > R" be a G-differentiable M~-function on the

open set D. Then F'(x) is an M-matrix whenever it is nonsingular.

Proof. Because of Theorem 5.6 we need to show only that the off-diagonal
elements of F'(x) are non-positive. This follows immediately from the
of f-diagonal antitonicity together with

5.f. (x) = lim % [£, Gertel)-f, ()] < 0, 1 43, 1,5 € N.

I x >0+

For Po—functions we obtain an even simpler result:

Theorem 5.8, Let F:D C Rp,+ R™ be a G-differentiable Po—function on the

open set D. Then F'(x) is a P, -matrix for each x € D.

0

Proof. Let x €D and h € R*, h # 0, be given and let {tk} be any decreasing,

positive sequence with lim tk

0. Then x + t,h € D for k 2 k., and, since
ke 0

k

Fis a Po—function, there is an index j € N and a subsequence'{tj } such
k

that hj # 0 and

t, h.[f.(x+t., h)~£f, 20, k=0,1,000 &
JkJ[ J(X Jk_) J<X)] > s

Hence

h)~fj(x)] >0

n
h, ¥ 8.f (x)h, = lim h, —— [£, (x+t,
T, J-1 1 koo J I J Jk_

t
=1
1 Jk,

and F'(x) is a P0~matrix.

Gale and Nikaido [1968] showed that if F'(x) is a nonsingular PO—

matrix for each  x -in an open-rectangle Q then F ' is injective. -We
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now derive a stronger result which, among other things, settles, in the
case of differentiable functions, the conjecture stated before Theorem 3.2.
For the details about degree theory used in the following proof, we refer,

for instance, to Ortega and Rheinboldt [1970].

Theorem 5.9. Let F:D ¢ R© ~ R” be continuous on the open set D. Assume
that F + €I is injective for any € > 0, and that for each x € D there is an
open neighborhood U(x) ¢ D of x such that Fy = Fx for any y € Ux)

implies that y = x. Then F 1is injective on D.

Proof. Suppose that Fxl = sz =.y for some xl,xz €D, xl # xz. By ‘assump-

tion we can choose open neighborhoods U, and U2 of xl and xz respec-

1
tively such that ﬁlc: D, ﬁz ¢ D, ﬁl‘n ﬁz = @, and that Fx = y for any
X € ﬁlkJ ﬁz implies that either x = xl or X-.= x2. Then deg (F,C,y) is
well-defined for C = U;, C = U,, as well as C = U, v 0,.

For any one of these three sets and a fixed 1 (=1,2) consider now

the homotopy
H:D x [0,1] ~ R®, H(x,t) = (1-t)Fx + t[x—x +yl.

Then H(x,t) # v for x € oC and t € [0,1]. 1In fact, H(x,0) = Fx # y and
Hix,1) = x - x + v # y, while H(x,t) = y for some t € (0,1) leads to
the contradiction Fx -+ 1§E-x =y +~E§E—Xl with the injectivity of F + €T,

Hence, by the homotopy invariance theorem of degree theory, it follows that

deg (F,C,y) = deg (x-x+y,C,y).
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This means that deg (F,ﬁi,y) = 1 as well as deg (F,ﬁl\J ﬁz,y) = 1.
On the other hand, our assumptions about ﬁl’ﬁZ imply that
deg (F,ﬁl(J ﬁz,y) = deg (F,ﬁl,y) + deg (F,ﬁz,y) which is a contra-

diction,

Corollary 5.10. Let F:iD C R® -~ R” be a continuous P0~functiqn on the
open set D. Then F is injective on D if and only if it is locally

injective.

Proof. By Theorem 3.4, F + €L is injective for any € > 0, Hence, if
F is locally injective, then Theorem 5.9 proves the injectivity. The

converse is trivial.

Corollary 5.11 (Gale and Nikaido [1965]). Let F:Q c rR® ~+ R be F-differen-

tiable on the open rectangle Q. If F'(x) is a nomsingular Poﬁmatrix for

each x din Q, then F- is injective in Q.

Proof. By Corollary 5.3, F is a P0~function and hence, by Theorem 3.3,
F + €I is injective for any € > 0. For any x € Q and € € (O,“F'(x)_luwl)

choose & > 0 such that U(x) = {y € R" Hydx“ < 8} ¢ D and

|Fy-Fx-F' (x) (%) | < ely=x l, v ev.

Then Fy = Fx for any y € U(x) would lead to the contradiction
NF‘(X)(y“X)|l€ ely—=x| < ”F'(x)—ln-l“y~x“, and hence U(x) is a neighborhood

of the type required in Theorem 5.9. The result therefore follows from that

theorem.
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Note that in this case F need not be a P-function as is shown by

the example
*2
F(xl,xz) =

As our final result we prove that indeed the conjecture stated

before Theorem 3.2 is valid for F-differentiable functions.

Corollary 5.12. Let F:Q C‘Rn +~ R? be an F-~differentiable, injective

P0~function on the open rectangle Q. Then F—l:FQ c R? = ’" is again

a Powfunction.

Proof. By Theorem 3.2 it suffices to show that F + A'is injective for
every A = diag(dl,...,dn), di >0, i e¢N. Since FF+ A is a P0~function,
Theorem 5.8 ensures that F'(x) + A is a Po—matrix for each x € Q, and

by the basic characterization theorem for P0~matrices of Fiedler and Ptdk
[1966], F'(x) + A is again nonsingular. But then Corollary 5.1l implies

that F + A is indeed injectiVe, and the proof is complete.
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